NASA Technical Memorandum 103854 a4 /
S B765

P18

Aerodynamic Design of Gas and
Aerosol Samplers for Aircraft

Paul T. Soderman, Nathan L. Hazen
and William H. Brune

(NASA-TM=-103554) AFRODYNAMIC DESIGN OF GAS N92-13522

AND AFROSNL S5AMPLERS FUR AIRCRAFT {NASA)
15 p CSCL 04R
unclas

G3/47 0048765

September 1991

NASA

National Aeronautics and
Space Administration






NASA Technical Memorandum 103854

Aerodynamic Design of Gas and
Aerosol Samplers for Aircraft

Paul T. Soderman, Ames Research Center, Moffett Field, California
Nathan L. Hazen, Harvard University, Cambridge, Massachusetts
William H. Brune, Pennsyivania State University, University Park, Pennsylvania

September 1991

NASNA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000






Summary

The aerodynamic design of airborne probes for the
capture of air and aerosols is discussed. Emphasis is
placed on the key parameters that affect proper sampling,
such as inlet-lip design, internal duct components for low
pressure drop, and exhaust geometry. Inlet designs that
avoid sonic flow conditions on the lip and flow separation
in the duct are shown. Cross-stream velocities of aerosols
are expressed in terms of droplet density and diameter.
Flow curvature, which can cause aerosols to cross stream-
lines and impact on probe walls, can be minimized by
means of a proper inlet shape and proper probe orienta-
tion, and by avoiding bends upstream of the test section.
A NASA panel code called PMARC has been used
successfully to compute streamlines around aircraft and
probes, as well as to compute the local velocity and
pressure distributions in inlets. An NACA I-series inlet
with modified lip radius has been used for the airborne
capture of stratospheric chlorine monoxide at high altitude
and high flight speed. The device has a two-stage inlet
that decelerates the inflow with little disturbance to the
flow through the test section. Diffuser design, exhaust
hood design, valve loss, and corner vane geometry are
discussed.

Nomenclature

A diffuser inlet flow area, m2

Ao diffuser outlet flow area, m2

b wing span, m

c wing chord, m | (br2

< wing aerodynamic chord = gf-blzcz (y)dy, m
CL wing lift coefficient

d duct diameter, m

dp diameter of aerosol droplet or particle, m

Ky total pressure loss coefficient, Ap/q

Lgif streamwise length of diffuser, m

L wing lift, N

M Mach number

My average Mach number of airflow in duct

Mo aircraft Mach number

p local static pressure, N/m2 o
Po free-stream static pressure, N/m?

P static-pressure coefficient, 2—%"-‘1

q free-stream dynamic pressure, N/m?2

r distance from vortex core to induced streamline,
or distance from wing quarter chord to upwash
location (fig. 1), m

Re Reynolds number based on duct diameter,
pVgdi

S wing area, m2

V4 average velocity in a duct, m/sec

Vmax maximum velocity in a duct, m/sec

Vo velocity of aircraft, m/sec

Vr particle velocity perpendicular to fluid
streamline, m/sec

Vi particle velocity tangent to fluid streamline,
m/sec

A\’ velocity in sampler primary inlet, m/sec

Vs velocity in sampler secondary inlet, m/sec

V3 velocity in sampler test section, m/sec

w wing upwash or downwash velocity, m/sec

w aircraft weight, N

X distance in boundary layer parallel to duct, m

o angle of attack induced by wing upwash, rad

Oy angle of one diffuser wall relative to duct
centerline, deg

r vortex strength, m2/sec

Ap total pressure loss at duct component, N/m?2
upwash angle (fig. 1), deg

u viscosity of air, kg/m sec

v kinematic viscosity of air, m?/sec

P air density, kg/m3

Pp aerosol droplet or particle density, kg/m3

®  vortex rotation rate, rad/sec

Introduction

High-altitude sampling of atmospheric chemistry has been
accomplished for many years by using rocket-launched
parachute drops and balloon drops (Anderson, 1975).
More recently, the authors have been involved in airborne
sampling using the NASA ER-2 aircraft, primarily to
investigate the role of free radical chlorine monoxide
(Cl10) in ozone depletion in the stratosphere (Brune et al.,



1988). Requirements for smooth, regulated airflow to the
chemistry analysis section of the experiments have led to
work in inlet- and internal-duct aerodynamic design. For
example, it is often necessary in airborne experiments to
decelerate the airflow smoothly so as to minimize turbu-
lence in the sampled airstream. In an air sampler, turbu-
lence could allow wall interactions that would alter the
abundance of the gas being investigated. Similar flow
constraints are required for aerosol sampling (Huebert

et al., 1990).

Fortunately, there is a large body of literature on inlet-
and internal-duct design. Aerodynamicists have been
concerned for many years about aircraft fluid mechanics
related to smooth inflow to engines, flow separation,
shock formation, boundary-layer control, fuselage
streamlines, wing upwash, internal duct losses, corner
vane design, pressure probe design, and so on. All of
these subjects are important to the design of airborne
sampling systems for gas and aerosols and will be
discussed.

With respect to aerosol sampling, the two most important
aerodynamic constraints are (1) minimization of the
inflow streamline curvature, since aerosols tend to cross
curved streamlines because of inertia (an action that leads
to inaccurate estimates of aerosol concentration); and

(2) elimination of turbulence, because turbulence leads to
wall collisions and removal of acrosols from the airstream
(Huebert et al., 1990). It is also assumed that it is often
necessary to decelerate the flow for the gas-analysis
system. This paper will focus on design ideas that affect
those aerodynamic goals.

Aerosol Motion

Aerosols or particles following a curved streamline expe-
rience a centrifugal force that tends to drive the particles
across fluid streamlines. This is a common problem in
laser velocimetry, where flow velocities, which are
deduced from particle motion, can be in error if the parti-
cles do not faithfully follow fluid streamlines. Likewise,
curved streamlines can cause deposition of aerosols on
probe walls and thereby lead to erroneous concentration
measurements.

A curved streamline can be thought of as a rotational field
like that induced by a vortex where all streamlines are
circumferential. The tangential velocity is

Vt = 1@ (1)

where @ is the vortex rotation rate necessary to produce
Vi, and r is the distance from the vortex center to the
streamline. Thus, r is the radius of a circle tangent to the
curved streamline at the region of interest. The centrifugal

force creates a radial velocity experienced by a particle
(Durst et al., 1976):

V. = rcozdpzpp
T 18u
Thus, the radial velocity depends on the particle density
and on the diameter squared. The 1~:"ial displacement can
then be computed for a given flow curvature. For high
streamline curvature, particles must be very small in order
to have a small radial velocity and displacement.
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Inlet Design

Probes for airborne aerosol samplers must capture the
airflow smoothly over a small but significant range of
inflow angles. Inflow angles change during flight because
of changes in aircraft airspeed and in angle of attack as
fuel is burned or as altitude is varied.

Probe orientation can be optimized to coincide with local
streamlines. Estimates can be made of streamline direc-
tion anywhere near the aircraft if the aircraft geometry,
airspeed, and wing lift are known. Approximate estimates
of wing upwash velocity w and induced angle of attack
o can be made using a simple vortex-line modeling of
the wing, as illustrated in figure 1. The vortex strength is

L
T= 5o 3)
and the upwash velocity ahead of the wing is
T
V= 2nr @

In level flight, aircraft lift equals weight, so the lift
coefficient is given by

CL=35=3 *)
and the induced angle of attack is
W .. Cpccosb
o; =V cos @ = = 6

for small values of w.

The above equations gave a value of 3.9° for the ER-2

aircraft wing pod station 3 m ahead of the wing quarter
chord. Thus, a probe at that location would be oriented
3.9° downward for alignment with the local flow.

Detailed flow-field streamlines are better computed using
computer panel methods. We have used the NASA Ames
PMARC code, which is a low-order, potential-flow panel
code (Ashby et al., 1990). Figure 2 shows, for example,
streamlines computed near an isolated ER-2 wing pod
using PMARC. These streamlines illustrate how far a
given probe must project ahead of the pod to capture



airflow upstream of flow curvature. For the probe location
noted in figure 2, the inlet was located 46 cm ahead of the
wing pod to avoid flow curvature. Similar analyses can be
used to estimate streamlines along the aircraft fuselage for
various flight conditions. '

The requirement that a probe accept airflow over a range
of inflow angles leads to the further requirement of inlets
with a finite lip thickness. Thin inlet lips function well for
axial inflow, but off-axis inflow will separate at the probe
leading edge. NACA put considerable work into testing
aircraft cowlings during the 1940s, primarily to control
velocities at engine inlets so as to avoid shock formations.
This is also a problem for the ER-2 and for other aircraft
that must fly at high subsonic Mach numbers to attain
high altitudes. Local flow accelerations around inlets can
cause the flow to go supersonic, even though the aircraft
flight speed is subsonic. Shock waves on or near the inlet
can adversely influence the flow into the inlet, especially
if the shocks oscillate.

The stream tube captured by the probe will be smaller
than the duct diameter if the duct velocity is lower than
the flight speed, and the stream tube will be larger than
the duct diameter if the duct velocity is greater than the
flight speed, as illustrated in figure 3. In the first case, the
stagnation point will be inside the inlet, and the flow that
is not captured will flow out around the lip. As the duct
velocity increases, the stagnation point will move forward.
Figure 4 shows various stagnation points on an inlet for
several values of flight Mach number and for a fixed duct
Mach number of 0.85. At low flight Mach number and at
high duct speed, the captured flow along the surface must
accelerate from the stagnation point high on the nose and
flow around the lip and into the duct. This could lead to
flow separation. Conversely, a high flight Mach number
and low duct Mach number would force the air that is not
captured to flow from the stagnation point inside the inlet
forward around the lip. Flow separation or sonic flow
could result on a sharp or otherwise poorly shaped inlet.

Nichols et al. (1949) and Baals et al. (1948) generated a
large data base that shows how NACA 1-series inlet
shapes (fig. 5) delay sonic flow and flow separation for a
range of flight Mach numbers and for a range of duct-
velocity-to—flight-velocity ratios. Re (1975) presented
further performance studies of the NACA 1-series inlets.
The NACA 1-55-100 inlet shape was chosen for the inlets
of the stratospheric sampler used in the ER-2 aircraft over.
Antarctica (Brune et al., 1989). However, the NACA lip
radius was increased to 6.35 mm after discussions with an
aircraft manufacturer. (Conversation with Don Nelson of
Lockheed Aircraft Co., 1986.) The slightly thicker inlet
lip is of a more conservative design than the NACA lip in
terms of prevention of flow separation from off-axis flow.

The NACA 1-series geometry is given in figure 6. (The
series designation code is explained in the figure.) The
NACA 1-55-100 inlet does not induce shock formation or
flow separation, even at the ER-2 flight Mach number of
0.7 and at moderate angles of attack of the probe.

More recently, Luidens et al. (1979) have done optimiza-
tion studies aimed at finding the shortest, thinnest lip that
will turn the flow into the inlet at low-speed conditions
without flow separation anywhere in the inlet. This results
in an elliptical lip. Figure 7 shows the important geomet-
ric parameters—fineness ratio and contraction ratio. At
duct-to-free-stream-velocity ratios of 1, the flow will stay
attached to the lip up to an angle of 28° (Luidens and
Abbott, 1976). At lower values of duct—to—free-stream-
velocity ratio, the separation angle is much lower (Baals
et al.,1948).

In summary, design guides exist for the design of inlet
lips and diffusers for low-speed (elliptical lips) and high-
speed flight (NACA 1-series). The design should result in
thin, but not sharp, lips that can turn off-axis flow into the
duct and decelerate the flow by diffusion as it moves
downstream, without any flow separation.

Dual Intake

The design of the inlet shape for the C1O sampler flown
on the ER-2 was complicated by the requirement that the
flow decelerate smoothly from a flight velocity of about
200 m/sec to a test-section velocity of 20 m/sec. That
large deceleration is equivalent to a blockage seen by the
inflow that causes the air to spill out and around the inlet.
Flow acceleration around the inlet outer surface would
cause the flow to go sonic and thereby generate shock
waves that could oscillateand perturb the flow into the
duct. The studies of Nichols et al. (1949) and Baals et al.
(1948) indicated that no inlet was found that could handle
such a large flow deceleration and spillage without
generating external shock waves at the aircraft flight
speed of 200 m/sec.

Therefore, a two-stage inlet was devised as shown in fig-
ure 8. The idea is that the first (primary) inlet would
capture and decelerate a stream tube to 30% of the free-
stream velocity or 60 m/sec, and that the second
(secondary) inlet would capture the center core of the
primary stream tube and decelerate it to 33% of the pri-
mary duct velocity, or to a nominal 20 m/sec. The excess
flow from the primary duct bypasses the test section and
is dumped. Because of the modest decelerations, shock-
wave generation would be avoided on both inlets. In
addition, the boundary layer in the primary duct would not
enter the secondary duct. At the secondary inlet, a new
boundary layer would commence but would not have a



chance to grow much in the short distance it traveled to
the test section. The primary inlet was designed to accept
flow that was off-axis by about 6° or less without flow
separation, so turbulence would not enter the center of the
duct. (The actual off-axis flow angle that initiates flow
separation has not been confirmed.) The secondary inlet
would only see on-axis flow.

Analysis of the two inlets in terms of velocity ratios
Vd/V, and critical Mach numbers (Baals et al., 1948) led
to the adoption of the NACA 1-55-100 inlet shape with
modified lip radius for both the primary and secondary
inlets of the stratospheric sampling experiment. AhhouOh
it was not possible to document the inlet flow fields in a
wind tunnel, flight tests of the experiment aboard the

ER-2 indicated that the aerodynamic performance of the
two-stage inlet system was very good. Measurements

involved waHheatmg of the entry portion of both 71nlets -

and evaluation of boundary-layer growth by means of -
low-mass thermistors arrayed at three downstream- -
stations and at various distances off the walls. Bolh
primary and secondary ducts were equipped with throt-
tling valves and velocity sensors. In-flight testing at
throttle settings appropriate for the design duct velocity,
and at moderate variations of velocity, indicated no wall
interaction with the core flow to a distance of at Jeast

17 diameters down the secondary duct, that is, past the
test station.

The two-stage inlet design would also lend itself well to
airborne aerosol sampling, because the flow that enters
the test section comes from the center of the primary duct,
and does not pass close to the inlet lips; therefore, it does
not encounter much streamline curvature except for curva-
ture caused by the probe angle of attack relative to the
flight direction. Angle of attack can be minimized by
anticipating local flow directions and orienting the probe

close to the local streamwise direction, as discussed in the
section oninletdesign. . . . -

Internal Components

For aerosol sampling, flow curvature must be minimized
because aerosols have inertia that causes them to cross
curving streamlines, as discussed above. This makes it
necessary to keep a straight duct between the inlet and
measurement station. The use of probes with elbows
upstream of the measurement station will surely lead to
the introduction of circulating flow in the elbow and
possibly to contact of the walls by the gas or aerosols.
Figure 9 shows typical flow patterns in elbows that have
no turning vanes, The momentum of the flow will drive
the flow outward across the core, which will establish
secondary flow vortices that rotate as shown. The fluid

elements follow a helical path while negotiating the
comer. These general flow patterns exist in circular or
rectangular corners, whether the flow is turbulent or
laminar. Corner vanes can prevent this pattern, as is
discussed below, but the vanes themselves could be
contacted by the gas or aerosol.

Care must be taken with the internal duct design © mini-
mize the pressure drops in all sections except at the regu-
lator valve. Otherwise, mass flow may be retarded, and

back pressure may lead to flow separation and turbulence -

in the test section. In most flight cases, the system can be

designed clean enough to pass adequate mass flow that is- -

generated by ram pressure. In balloon drops with little
forward speed, it has been necessary to incorporate a fan

downstream of the test section in order to generate
adequate mass ﬂow rate in the test section (Wemstock

Pressur rop occur all alono the duct because of vnscos-

ity, but the primary pressure drops occur at corners, dif-

fusers, junctions, area changes, and other perturbations in

the duct. We have used the extensive data base of Idelchik
(1966) for pressure-drop estimates, but there afé hufrige- -
ous data sets in the literature on duct component préssure
drop (see Blevins, 1984; Miller, 1974).

Generally speaking, unobstructed diffusers should have
wall angles of approximately 3.5° or less relative to the
duct axis to prevent flow separation. This criterion is only
valid for smooth, parallel inflow with turbulent boundary
layers on the walls. With blockage in the diffuser, such as
the secondary inlet shown in figure 8, the wall angle can
be increased, because the effective wall angle is given by

T ldlf

o -1(\/13 J—] o

where the areas have been reduced by the cross-sectional
area of the obstruction. ,

In a turbulent boundary layer, the flow mixes randomly
and will contact the wall. Since wall contact affects gas
and aerosol properties, it is often necessary to sample flow
that is outside the boundary layer. Unless there is flow
separation at the inlet, it will take some distance before
turbulent pipe flow will be established in the duct. Fig-
ure 10 shows the velocity distribution for laminar flow in
the inlet section of a channel. A fully developed laminar
pipe-flow velocity distribution does not develop until a
distance of (Schlichting, 1979)

x=0.03dRe ®

so that for a Reynolds number (Re) of 5,000 to 10,000
x ranges from 150 to 300 pipe diameters. In flows with
higher Reynolds numbers, the boundary layer will become




turbulent. Even then, it takes 25 to 100 pipe diameters for
the boundary layer to spread to the centerline as estab-
lished pipe flow. The variation in distances depend on
wall roughness and inflow smoothness.

On a flat plate, the flow will transition from laminar to
turbulent flow at a distance from the start of the plate
approximately equal to

v
x= 350,000~ ©)

For the two stage inlet of figure 8, the boundary layer was
laminar the entire length of the primary inlet

(V4 =60 m/sec) and only 0.5 cm thick at the downstream
end 46 cm from the inlet. The secondary inlet scooped off
the flow outside the boundary layer and started a new
laminar boundary layer. Thus, turbulence was not a prob-
lem for the flow conditions experienced in the flight test.

As discussed above, turning vanes are essential to control-
ling flow circulation and the resulting pressure losses in
comners. Figure 11 shows typical corner vanes designed to
subdivide the flow into separate channels as a means of
reducing pressure drop. Corner pressure drop with vanes
can be a third or less of the pressure drop without vanes,
depending on vane geometry. Airfoil vanes, for example,
have less loss than thin vanes, though they are more
expensive to fabricate. Blevins (1984) gives design
information on vane geometry and spacing.

The largest pressure drop in the duct should occur at the
regulator valve 50 that a range of mass flows can be
controlled. Figure 12 shows total pressure-loss coeffi-
cients for various valves as a function of valve position
(Miller, 1974). Figure 13 gives the loss coefficients for a
fully open butterfly valve as a function of valve-
thickness-to-duct-diameter ratio. These curves can be
used as design guides, but the system should be calibrated
in a laboratory to verify mass flow rate versus valve
position.

Miller (1974) also presents empirical equations from
Gardel that give the pressure loss associated with combin-
ing and dividing flows. In the stratospheric sampling
system, for example, the primary and secondary flows
were recombined before being exhausted out of the wing
pod. By designing the confluence so that the two flows
merge nearly parallel, the pressure drop can be mini-
mized, and a suction can be induced to aid pumping in
one duct or the other.

Exhaust

In the sampling system, the primary and secondary air-
flows were recombined and exhausted out the side of the

ER-2 wing pod. A simple hole in the wing pod might have
generated very unisteady flow that could have perturbed
the entire duct system. Therefore, an exhaust hood was
added, as shown in figure 14. The hood protects the
exhaust from the airstream and turns the exhaust flow
parallel to the airstream. This not only stabilizes the duct
flow, but can create a small negative pressure at the
exhaust, which will contribute to the system pumping.
The external drag and suction pressure of the hood can be
estimated from the work of Hoerner (1965) and the
internal pressure drop of the hood can be estimated from
the work of Rogalio (1940).

Concluding Remarks

The aerodynamic design of airborne probes for the
capture of air and aerosols was discussed in terms of inlet
lip design, internal duct components for minimum pres-
sure drop, and exhaust geometry. Inlet designs that avoid
sonic flow conditions on the lip and flow separation in the
duct were shown, and cross-stream velocities of aerosols
were expressed in terms of droplet density and diameter.
A simple method for estimating wing upwash angles at
probes was developed. A more elaborate method for flow
computations, the NASA panel code called PMARC, was
used successfully to compute streamlines around aircraft
and through probes, as well as to compute the local
velocity and pressure distributions in inlets. This allows
orientation of the probe so as to align it with expected
streamlines near the aircraft. An NACA 1-series inlet
with modified lip radius, used for a stratospheric sampling
experiment at high altitude and high flight speed, was
described. The device has a two-stage inlet that deceler-
ates the inflow with little disturbance to the flow through
the test section. Boundary-layer growth, diffuser design,
exhaust hood design, valve loss, flow junctions, and
corner vane geometry were discussed.
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NOSE-INLET DESIGNATION
XX vy X LA XX yy XX vy A designation system for nose inlets has
been devised that incorporates the following
0 0 13.0 41.94 34.0 69.08 60.0 89.11 bas[c propor“ons (see sketch):
2 4.80 14.0 4366 350 | 7008 62.0 90.20
4 6.63 15.0 45.30 3.0 | 7105 64.0 91.23
6| 812 || 160 | 4688 | 370 | 7200 660 | 9220 d inlet diameter _
8 9.33 17.0 48.40 38.0 72.84 68.0 93.11 D maximun outside diameter of nose inlet
1.0 10.38 18.0 49.88 39.0 73.85 70.0 93.95 X length of nose inlet, measured from
151 1272 190 | 5131 | 400 | 7475 720 | 9475 inlet to maximum-diameter station
20 14.72 20.0 52.70 410 | 7563 74.0 95.48
25 16.57 21.0 54.05 420 | 7648 76.0 96.16
3.0 18.31 22.0 55.37 430 77.32 78.0 9%.79 The number designation is written in the form
35 19.94 23.0 56.66 440 78.15 80.0 97.35 1-40-150. The first number in the designation
4.0 21.48 240 57.92 45.0 78.95 820 97.87 represents the series; the number 1 has been
451 229 | 250 | 5915 || 460 | 70.74 64.0 93-32 assigned to the present serles. The second
oo | 238 | 20 | S03s |} 470 | 8050 850 | 87 group of numbers specifies the inlet diameter
. .01 27.0 61.52 480 | 8125 88.0 99.09 .
70 | 2047 28.0 62,67 @0 | 8ige 90.0 99.40 in percent of maximum diameter d/D; .the third
8.0 31.81 29.0 63.79 50.0 82.69 92.0 99.65 group of numbers specifies the nose-iniet
9.0 34.03 30.0 64.89 520 | 84.10 84.0 99.85 length in percent of maximum diameter X/D.
100 | 3613 1 310 | 6597 || 540 | 8545 9.0 | 99.93 The NACA 1-40-150 nose inlet, therefore, has a
1.0 38.15 32.0 67.03 560 | 8673 98.0 99.98 d X
12.0 40.09 33.0 68.07 580 | 8795 1000 | 100.00 1-series basic profile with D° 0.40 and D= 1.50.

Nose radius: 0.025Y

Figure 6. NACA 1-55-100 cowling coordinates.
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(x/a)P + (yb)d = 1.0
Fineness ratio = a/b
Contraction ratio CR = rﬁ /r;" =(r + l:a)z/rt2

Figure 7. Elliptical lip shape parameters. (Luidens et al., 1979)
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Figure 8. Two-stage inlet geometry using an NACA 1-55-100 cowling with modified lip radius.
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Figure 9. Flow in a curved pipe showing helical flow pattem of a fluid element and two vortices created. (Blevins, 1984)
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Figure 10. Velocity distribution for laminar flow in inlet section of channel {a = half channel width). (Schlichting, 1979)

(a) Concentric {b) Circular src (c) Airfoil vanes
splitters vanes

Figure 11. Three-vane systems for reducing pressure loss in sharp bends shown in a 90° bend. Angle of atiack (a) is one-
half the bend angle for circular-arc vanes and slightly greater for profile and airfoil vanes (R = comer radius). (Blevins,
1984)
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Figure 12. Total pressure loss coefficients for several duct Figure 13. Total pressure loss coefficients for fully open
valve types. (Miller, 1974) buttertfly valves. (Miller, 1974)
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Flgure 14. Exhaust hood geometry; all dimensions in mm.
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